Roll No.

324555(24)

B. E. (Fifth Semester) Examination, April-May / Nov.-Dec. 2020

(New Scheme)

(Elect. Engg. Branch)

CONTROL SYSTEM ENGINEERING

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) is compulsory, attempt any two parts from (b), (c) and (d) of each question. The figures in the right-hand margin indicate marks.

Unit-I

- 1. (a) Define open loop and close loop system with example. 2
 - (b) For a given Rotational system, obtain analogous electrical system based on analogy and write mathematical equations.

7

- (i) F-V analogy
- (ii) F-I- analogy

(c) Prove that steady state accuracy and transient accuracy of closed loop system is better than open loop system.

7

7

7

7

(d) Explain thermal system is detail. Find transfer function of thermal system.

Unit-∏

- 2. (a) Define Servomotor.
 - (b) Armature controlled D.C. servomotor in detail. Also draw block diagram and find Transfer function of above.
 - (c) Reduce the following block diagram of the system shown in figure into a single equivalent block by block diagram reduction techniques.

(d) Draw signal flow graph and find C(s)/R(s) by using Mason's gain rule.

Unit-III

- 3. (a) Define Rise time, setting time and peak overshoot for second order system.
 - (b) Forward path transfer function of unity feedback

system is
$$G(s) = \frac{K}{S(S+1)}$$
, where K is constant.

Calculate factor by which K should be multiplied so

324555(24)

PTO

324555(24)

that overshoot of unit step response redued from 75% to 25%.

(c) For a system $G(s)H(s) = \frac{K}{S^2(S+2)(S+3)}$. Find the value of K to limit steady state error to 10.

When input to system is $1+10t+\frac{40}{2}t^2$.

(d) A unity feedback system shown in the following figure. Find the ξ and w_n , when there is no controller i.e. the value of derivative feedback controller $K_0 = 0$. Also find K_0 , if ξ is to be modified to 0.5 by use of controller.

Unit-IV

2

4. (a) Define gain margain and phase margain.

(b) Sketch the Polar Plot for a system with $G(s)H(s) = \frac{10}{S(S+1)(S+2)}$ Calculate its gain margain in dB and check stability of system.

(c) Sketch the Nyquist plot for a system with

$$G(s)H(s) = \frac{10(S+1)}{(1+2s)(1+0.1s)+(1+0.02s)}$$

comment on its stability.

(d) Draw the bode plot for unity feedback system with

$$G(s) = \frac{80}{S(S+2)(S+20)}$$

5. (a) Define types of compensator.

(b) What is the difference between lead compensator and lag compensator.

(c) Draw the Blode plots on a semilog graph paper of a typical lead compensator. Explain the effects and limitations of phase lead compensators.

7

7

2

7

7

(d)	Write	short	notes	(steps)	for l	lag c	compe	ensator	design	n
	using	Root	locus	method	ł.					

7

r ang Torrindati semiran 80 miningsi

the material of substitutions, ma triests,

B Approximately 18 Province

guidase su assuremento.

the many distribution all majobod sile yould (b)

 $\frac{\partial u}{(dt + 2)(2 + 2)(2 + 2d)}$

(a) Deline trees of compensure

(b) What is the difference between bedicampuning and the compuning

(b) Draw Be-Hoofe picts on a sendou maps paper of a repical load compensator. Explain the effects and luminations of plants beat government.